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Abstract. We study the quantum theory of two-dimensional electrons in a magnetic field and an electric
field generated by a homogeneous background. The dynamics separates into a microscopic and a macro-
scopic mode. The latter is a circular Hall current which is described by a chiral quantum field theory. It is
shown how in this second-quantized picture a Laughlin-type wave function emerges.

1 Introduction

The discovery of the fractional quantum Hall effect
(FQHE) [1,2] marked a new era in condensed matter
physics, both theoretical and experimental. This effect
takes place in two-dimensional electron systems in a strong
magnetic field. It occurs because the (Coulomb) electron—
electron interaction results in the formation of highly cor-
related incompressible states [3], despite the fact that the
lowest Landau level is only partially filled. The electron
systems which demonstrate a FQHE (and are called FQH
liquids) in fact represent a whole new state of matter. For
its description one has to completely abandon the theories
based on the single-body picture (such as the Fermi liquid
theory) but use an intrinsic many-body theory, e.g. the
one proposed by Laughlin [2], and develop adequate new
techniques and concepts (like the one of topological order
4]).
All bulk excitations of the FQH liquids have a finite
positive energy gap. With the gauge arguments in [5-7]
one gets convinced that the FQH states should also sup-
port gapless edge excitation, similarly to the IQH case, but
which, contrary to the latter, cannot be described by a chi-
ral 1D Fermi liquid theory. In the case at hand, the topo-
logical nature of the large-scale physics of the FQH liquids
provides an effective-theory description of their bulk prop-
erties by means of a topological Chern—Simons theory [8,
9,7]. In particular, based on the connection between the
three-dimensional topological Chern—Simons theory and
the two-dimensional chiral Wess—Zumino—-Witten model
(Kac-Moody algebra), discovered by Witten [10] and con-
structively developed in [11], it has been realized [12,8]
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that the edge currents of an arbitrary QH fluid in an in-
compressible state generate a chiral current (Kac-Moody)
algebra. This observation suggested the application of
methods from chiral conformal field theory to the analysis
of incompressible QH liquids. In this relation one traces
the nowadays popular holographic principle [13]. In our
case it states that the topological field theory describing
the scaling limit of the bulk of an incompressible QH fluid
is completely determined by a chiral conformal field the-
ory describing the edge degrees of freedom of such a fluid
with the same Hall conductivity [14].

In general, the theory of the edge degrees of freedom
is more complicated and less universal than the theory
of the bulk [15]. Still, the edge excitations which form
the so-called chiral Luttinger liquid (CLL) provide us a
practical way to measure topological orders in experiment.
However, most of the considerations of the edge states
rest upon an effective-theory analysis (though in [16] a
reformulation of the edge theory directly in terms of a set
of fundamental excitations has been attempted) and we
will strive for a consistent derivation from a microscopic
theory.

The quantum one-dimensional anyon fields (in partic-
ular, the non-canonical fermions) constructed in [17-19],
are a reasonable candidate for this role. It is our purpose
in the present note to show how they originate from the
initial two-dimensional Fermi algebra, what type of states
they form and how the whole picture changes with the
temperature. In addition, one other point will be clari-
fied. Recall that as specially emphasized by Haldane [20],
the key step in Laughlin’s treatment of the FQHE has
been to abandon conventional second-quantized methods,
which had proved fruitless, and return to a first-quantized
description. The non-canonical fermions in question in
fact relate the first- and second-quantized pictures of the
FQHE.
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Fig. 1. Classical Larmor precession in harmonic background

More in detail, we shall consider electrons in a plane
with a constant magnetic field perpendicular to it and an
electric field generated by a homogeneous background har-
monic potential. When only a magnetic field is present, the
one-particle observables form two independent (mutually
commuting) canonical pairs — the velocities and the cen-
ters of Larmor orbits. Correspondingly, the Hilbert space
of the (first) quantized theory has a tensor-product struc-
ture (see also [21]). In general, an arbitrary electric field
would spoil it, but it turns out that this does not happen
for the particular (radial) electric field we have chosen. In
this case the time evolution respects this product struc-
ture and factorizes into a microscopic and a macroscopic
motion. Also upon second quantization we have a tensor
product, the second factor corresponding to the edge cur-
rents mentioned above. In the thermodynamic limit one
obtains a (1+41)-dimensional chiral quantum field with the
possibility to use all results that are available for it. Our
main goal will be to deduce all properties of the current
algebra from the underlying fermionic field algebra.

2 Preliminaries

We consider the motion of electrons in two dimensions in
a constant magnetic field B perpendicular to the plane
of motion and an electric field E(x) generated by a ho-
mogeneous background charge. In units e = m = 1 the
one-particle Hamiltonian is

+ 5 (@l +a23),

+ BIQ 2 n Bﬂjl 2
p 5 P2 5 B)
(1)

(here B,E > 0) such that E(z) = Ex and B = |B|.
Since for many particles the Coulomb repulsion cannot be
treated exactly one might think that it is to some extent
taken care of by a partial neutralization of the background
and we consider the case B? > FE.

The classical motion has a high-frequency mode corre-
sponding to the cyclotron circles in B and a low-frequency
rotation in the opposite direction of the centers of these
circles showing the Hall effect generated by F, see Fig. 1.

To separate these modes we recall that in a magnetic
field, velocity components provide a pair of canonical vari-
ables

1 E
H=-
2
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v = (p1 + Bx2/2,p2 — Bx1/2) = (¢,p), {¢:p} = B. (2)

Another (independent) canonical pair is given by coordi-
nates of the centers of the cyclotron circles:

- (@5} = 1/B. ()

_ Z1 P2 T2 b1 -
.’13:( ):(Qa_p)v

In these variables the Hamiltonian (1) separates into two
oscillators with an effective magnetic field b = (B? +
4E)'/? that is induced by the electric field:

H = [(1+ B/b)vj +b(b— B)x;]/4, (4)
where in vy, Zp, (as well as in ¢, p, g, p below) B is replaced

by b.
For the complex coordinates

b/2, (5)
the Poisson brackets are
{a*,a} =1,
{c*,c} =1,

with

{a, I:} = ia, (6)
{c*,ﬁ} =ic*, {c¢,a} ={c,a*} =0,

L =z1ps — x2p1 (7)

being the generator of rotations. This makes a the high-
frequency mode,

a(t) = e OB 24(0), L(t) = L(0). (8)

whereas ¢ shows a low-frequency rotation

c(t)

In the limit considered v — E/B, and we get the usual
Hall velocity v = B x E(z)/|B|>.

In quantum theory the eigenvalues of v?/2 and 7 /2
are b(n + (1/2)), respectively (m + (1/2)) /b so that the
spectrum of H becomes

=e ¢(0), v=(b—B)/2. (9)

Epm—FEo=n(b+B)/24+m(b— B)/2. (10)

Upon first quantization a,f/,c become operators which
satisfy (6) with {,} — —i[,]. The time evolution a(t) =
eHtq(0)e~Ht and similarly for L, ¢ remains the same; see
(8), (9).

For the ground state ¥y, (H — Ep)%, = 0, we must
have

aly = LWy = 0. (11)

Furthermore, a* and ¢ decrease L by 1, so we must also
have ¢¥, = 0, since by (1) H > 0. The eigenstates of H,
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which correspond to the eigenvalues E,, ,, from (10) are
thus constructed in the usual manner:
c*ma*nwo

Valm!

and they are simultaneously eigenstates of the angular
momentum L.
Let us make a few remarks.

Wy = (12)

(1) n labels the Landau levels and m shows how their
degeneracy is lifted by the electric field F of the back-
ground (observe 0 < v < E/B).

(2) ¥, m as a function of (r1,x2) can easily be given as
in [2] and in our notations reads

wnm _ (ﬂ,m!n!2m+n+lbm+n71)71/2€b(mf+z§)/4

WA A
ory Oxa drq Oz
xe b@i+a3)/2.

(3) The particle density in the lowest Landau level is pro-
portional to the effective magnetic field b

Wy = \/b/2mml(b)2)™/2zmeb77/2
Z |W0,m|2 = b/27T
m

Thus the electric field increases the density but inde-
pendent of the distance from the origin though the
more distant Larmor circles are pulled further apart

(Fig. 1).

3 Second quantization

In first quantization, the Hilbert space splits into a tensor
product and so does the observable algebra O = {a}®{c}.
The first factor corresponds to the Larmor motion and
the second one to the Hall current. Upon second quanti-
zation we similarly get a tensor product of two (1 + 1)-
dimensional field theories. For small F/B the first one
describes the microscopic Larmor circles while the macro-
scopic Hall current is given by the second one, which we
shall now investigate more closely.

To come to the many-body aspects we start with a
Fermi field ¢(x),

(W(@), v* (@)} = d(z — 2),
{(¥(2), (=)} =0, =R

and construct creation and annihilation operators for the
various modes by [d*z®;  (z)i(x) and the hermitian
conjugate. We shall start with 2M + 1 modes in the lowest
Landau level v ,,, and consider the limit M — oo, E — 0,
such that (2M + 1)v stays less than (b+ B)/2 in order not
to cross the next Landau level. For our result it is essential

that a finite fraction of the modes are filled. Defining

(13)

asrom = [ A0l (@)0() (14)
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we thus embed our operators in the CAR algebra A gen-
erated by an,a),, m € Z,

{am; Cl;:} = 6mna {ama an} = Oa (15)

and normalize the chemical potential to zero by using the
ground state

(A an) = 6mnO(—m),

(anal,) = 6mnO(m), (16)

© being the step function (with ©(0) = 1/2). For us the
relevant observable will be the Hall current as a function
of the rotation angle 8. Thus we introduce the fields

$(0) = ame™O(M — |m|) (17)
and the current
Jm(0) = ™ (0)v(0) — (¥ (0)y(0)). (18)

So far, these operators are bounded, but for M —
oo they become operator valued distributions and to get
operators in this limit we have to smear them with (real)
test functions; however, in the discrete case this might well
be the corresponding Kronecker §,

Jp.M :/ d0jns (0)e™?

—T

= Z Sy pOn O(M — In+ p))O(M — |n]),
ca*a:=a%a— {a*a).

That the limit M — oo makes sense is shown by

Lemma 1. If f' € L? then j, p converges for M — oo to
some j, in the strong resolvent sense.

The proof is as follows. Strong resolvent convergence
means that j, as converges strongly on a dense set of es-
sential self-adjointness, that is, we have to show that for
the corresponding vectors |d), Ve > 0 there exists N € Z
such that ||(jp,amr — Jp,mr)|d)|| < € VM, M’ > N. Since the
strong convergence on infinitely many vectors is awkward
to demonstrate we make a detour. The KMS state

577’7,77,

Ty opm - OmnOp(=m)

(@ an) = (19)
gives in the GNS representation 7, T' = 1/, a cyclic and
separating vector |T) and strong convergence on |T) im-
plies strong convergence on the dense set a|T') if ||7;(a)|2)]]

< 00. In our case,

1Giar — dar)alTHIIP = (Tla* (jar — jar)*alT)
= (T|mi(a)a” (jur — jar)*|T),

and this goes to zero if |(jar — jar)|T)| — 0. Thus 7r(jar)
converges to an operator joo 7. Since matrix elements in
mp, (T|e™1seld~1Tels|T) converge for T — 0 and the vec-
tors e |T') are total in the Hilbert space of 77, this defines
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an operator joo in mo [17] and this is the one we shall use
further on.
Now if M > M,

’
. RMM

. . - Lo«
Jp,M — Jp,M’ = § : FQpypln n+p,n’
n

with

MM’
Rn-i—pm

=O(M — |n+p|)O(M — n])
— O(M' — |n+p))O(M' —|n|).

Furthermore (: a,Gm 1 @ an 1) = Omn’ Onm Op(n)
O3(—m) and we get

paar — dpar ) =3 (14 e) 7

n

X (1 + eﬂ("ﬂo))i1 RMM

n+p,n
M—|p|
1 1
< . .
= Z 14+eBn 14 eBlntp) -0

M’ —|p|
O

The state (16) is nothing but the T — 0 limit of the
KMS state of the shift, (19). Thus the above statement
carries over to (16) since everything is continuous for T' —
0.

Strong convergence ensures us that the limit of a prod-
uct is the product of the limits. In particular, the commu-
tator of limit elements is the limit of the commutator.
Next we show that the latter is an element of the center
of the strong closure of my(A):

Lemma 2. Vk, the double commutator [[jp nr, jpr,m), @}
converges to zero in operator norm.

Let us prove this.

We use [af,am:,alan] = @ an Onm: — QX m dmpns to
conclude

Up, s Jpr ] = Za:L-i-p-&-p’an@(M —[nl)
n

xO(M —|n+p+p)
X [O(M — |n+p'[) = O(M — |n+pl)].

Commuting with a; deletes a,, and ), leaving us with

oy pp O(M = [E)OM — [k + p + p'l)
X [O(M — |k +p'[) = O(M — |k +pl)].

Now |laj, Il =1 and hence

||ij,M7jp’,M]7a2]H
< (O(M — |k[ = Ip']) —O(M — [k = |p]))-

The latter differs from zero for |k|+|p/| < M, |k|+|p| > M
or [k|+ |p'| > M, |k| + |p| < M, so for fixed k,p,p’ and
M — oo it goes to zero. O

Lemma (2) means that whenever 7 (A)”, the weak clo-
sure of my(A), has a trivial center, [jp, jy/] is a c-number
and the j,’s generate a bosonic current algebra. We are
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in this situation, but since [j, ar, jpr,m] does not converge
in norm this c-number depends on the representation. It
equals the limit of ([jf ar, jg,m]) since () is weakly contin-
uous and we arrive at

Theorem 1. The operators j, obey
[jpajp’] = —p5p7,p/.

The proof is straightforward: To calculate ([jf ar, jg,0])
we use (16) and the expression from the previous proof.
This leads to 3., O(M — |k)[6(M — |k — p|) — O(M—
|k + p|)]. For p > 0 this is —Z,::Mj\? and for p < 0 it is
S0P thus altogether we have —p. O

Also the two-point function of the j,’s can easily be
deduced:

(JpJ-p') = Z< Ay pQn 3 Gy G 2)

« O(M — )M — |n + p)O(M — |m])
< O(M — |m + ')

= 36, 01— P)OMONM — |n])
x O(M — |n+pl)
= —pdppy O(—p).

We have thus arrived at the current algebra and a
ground state

[jpaj—p/] = 7p5pp/7 ]; = j—pa pEZ
<jpjfp’> = _p(spp’e(_p)' (20)
From this we define a density p = 7,
p(0) =1 e IERl2 ip = pt(0) + p7 (), (21)

p#0
p*(0) = p(0).

€ > 0 gives a cut-off and eventually, when it has made
the various manipulations legitimate, we let ¢ — 0. The
ground state |0) is defined as

(0l = ¢,/0) =0, (22)
where

j(0) = Z (eipecp + e_ipgc;) e~P/2 /p/2m.

p>0

For the two-point function we thus get

(p(0)p(0")) = (p~(0)p™ (0")) = Zei(9—9')p—ps/p

p>0
= —In(1 @75 = S(9 - 0'). (23)
Now we define collective operators by
T (0) = e,

T (0) = e PO —w_ (). (24)
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The two-point function of the operators (24) can be
calculated using (22) and Hausdorff’s formula since the
commutator [pT(8), p~(0")] is a c-number. For coinciding
arguments it equals Ine and thus

(Do (O)T(0)) = (el*(p" (O)Fp™ (0)) g=ialp™ (0)+07(67))

e R L OV
a®(p~(0)pT(0")

ea28(979').

2
=e%e

—a25(0) (25)

=€

For the general n-point function the same calculation [19]
amounts to

< a1(91> a2(92) wan(en»
P DU a28(0)/2=3, «, orosS(0,—05)

S i T/ZH( ei(&—es)—s) e

r<s

(26)

To get in the limit £ — 0 for the time evolution 8§ — 6+uvt,
with v as in (9), v < E/B, a finite velocity, we rescale § =
ve, —m/v < x < 7/v. Then (1 — el@r=0)=2)  _jy(z —
') +¢ and rescaling ¥, to ¥, (x) = e~¥/2y7/2ev"*r
get, e.g., the v anyonic 2n-point function

() we

(o (@1) - W (@)W (1) - - ¥ (yn))
H(l“k —z)” H(yk - )"
_ k<l k<l 27
(= [ Tln = +ie)]” 0
k.l

This shows that for v odd (respectively even) the ¥ fields
at different points anticommute (respectively commute);
however, they are not necessarily canonical. In general, in
this limit ¥, and ¥ obey anyonic commutation relations
[19].

A few remarks are in order. The commutation relation
of the v anyons with the local electron charge becomes

W, (@), pla)] = /o, (2)5(z — 2').

Thus, in this thermodynamic limit it happens that the
charge generated by ¥, (z) is v'/2§(z). This can be un-
derstood as follows. The electron charge density is j(z)
and e/ /(@) (@)dz changes its expectation value by f'(z).
Therefore, if f tends to zero at infinity, the total change
in the charge would be zero. However, for the v-anyon
¥, (z) the corresponding function is f(z) = v'/26(z) and
formally it induces a charge v'/25§ (z), the opposite charge
being pushed to infinity. What happens more exactly is
that for the (regularized) smearing function fy;(z) = v'/?
[O(z) — O(z — M)] the unitaries e/ /@@ o not
converge even weakly for M — oo but the transformation
they induce does [17]. The ¥, (z) are namely the ideal
elements added, which generate this local gauge transfor-
mation.

Equation (25) can be written as (Det (1/(xx —y1)))”
and shows only for v = 1 the truncation properties of
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a quasifree state. The corresponding wave functions are
given only in this case by a Slater determinant and oth-
erwise, as we shall show below, they are of Laughlin type
of order v.

4 Anyons and Laughlin states

Definition 1. An n-particle state is given by

|n) = /!l/*(arl)...!I/*(xn)|Q>F(x1,...,xn)dxl...dxn;
its wave function is
Oz, xn) = (2P (x1) ... ¥(x,)|n).
|n) is a Slater state if F\(zy,...,zy) = Hfz(xz), and ¢ is

of Laughlin type of order v, if it is of the form H(m —
i>k
k) H@(xm), for 0 < |P| < o0 and v odd.
Theorem 2. For fermions of order v a Slater state con-
structed with (22) has Laughlin-type wave function of or-
der v for a total set of f’s.
Again, let us add some remarks.

(1) Because of the anti-commutativity of the ¥’s, the
Slater determinant Det fi(x;) gives the same state as
F.

(2) If |£2) is the vacuum then |n) = 0 if for some fy,
suppfr C (0, —00). However, Definition 1 can also be
used for KMS states and then Theorem 2 holds with
some minor modification.

To prove this, we take the f’s with suppfr C (0, 00)
such that f(x) is analytic in the upper half-plane. For
these functions, {f.(z) = (z—2)7!,Imz <0} is total.
Then we get up to a normalization factor

(725(1’1,...,

T —w)”

x/ dyi dl/n k>l
(y1—21) Hmk—yl—i—la
kol
[T =) Tz — 20
1> k>l
H(xk — 2 +ig)”

k,l
Thus we have a Laughlin-type wave function with
&(z) = H(x —z+ie)™"
1

which has the desired properties. a
We remark the following.
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(1) For v =1, ¢ is (up to a constant factor) the Slater
determinant Det (X{(@(Xk)), for other v’s it is the v-

th power of such a determinant.

For finite temperature T = =1, 7(x; — a3 is replaced
by Bsh[(m(xi - x¢))/3] and &(z) by 3" [T sh"[x(x
—z +ie)/B]. By pulling out [],., (2 — x%)” the rest
gets a factor [ [, sh”[m(x1 —xk)/B]/(x1 —xx) which is
finite and symmetric but no longer a pointwise prod-
uct.

(2)

5 Conclusions

We have studied the typical quantum Hall setting in the
spirit of canonical quantum theory. The key point in our
analysis is the tensor-product structure of the theory that
describes it. Upon second quantization the one-dimen-
sional field algebra related to the fractional quantum Hall
effect is then exhibited in the thermodynamic limit. For
its construction from some collective modes it is essen-
tial for the last Landau level to be filled to a finite frac-
tion. This is an anyonic algebra [17-19] which, in particu-
lar, contains (non-canonical) Fermi fields characterized by
odd integer values of the statistics parameter v. Despite
of being locally anticommuting, these “fermions” are un-
bounded, do not satisfy CAR’s and their correlators ex-
hibit a severe temperature dependence [19,22]. However,
their n-particle wave functions at zero temperature are of
Laughlin type of order v, with a simple generalization for
the finite-temperature case [23]. Thus, a relation between
the first- and second-quantized pictures of the FQHE is
achieved.

Acknowledgements. We thank E. Langmann and H. Narnhofer
for suggestive discussions and useful remarks. N.I. thanks the
International Erwin Schrodinger Institute for Mathematical
Physics where this research has been performed, for hospitality
and financial support. This work has been supported in part
also by “Fonds zur Férderung der wissenschaftlichen Forschung
in Osterreich” under grant P11287-PHY.

N. Hlieva, W. Thirring: Second-quantization picture of the edge currentd in the fractional quantum Hall effect

References

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett.

48, 1559 (1982)

R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

The quantum Hall effect, edited by R.E. Prange, S.M.
Grivin (Springer, New York 1990)

X.G. Wen, Topological orders and edge excitations in FQH
states, cond-mat,/ 9506006

R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

B.I. Halperin, Phys. Rev. B 25, 2185 (1982)

X.G. Wen, Phys. Rev. B 43, 11025 (1991)

J. Frohlich, T. Kerler, Nucl. Phys. B 354, 369 (1991)

J. Frohlich, A. Zee, Nucl. Phys. B 364, 517 (1991)

E. Witten, Commun. Math. Phys. 121, 351 (1989)

. J. Frohlich, C. King, Int. J. Mod. Phys. A 4, 5328 (1989)
. X.G. Wen, Phys. Rev. B 40, 7387 (1989); Phys. Rev. Lett.

64, 2206 (1990); Phys. Rev. B 41, 12838 (1990)

. D. Bigatti, L. Susskind, TASI lectures on the holographic

principle, preprint SU-ITP 99-14, KUL-TF-2000/03, hep-
th/0002044

J. Frohlich, B. Pedrini, C. Schweigert, J. Walcher, Univer-
sality in quantum Hall systems: Coset construction of in-
compressible states, Ziirich preprint ETH-TH/00-3, cond-
mat /0002330

A. Cappelli, L.S. Georgiev, I.T. Todorov, Commun. Math.
Phys. 205, 657 (1999)

R.A.J. van Elburg, K. Schoutens, Quasi-particles in
fractional quantum Hall effect edge theories, cond-
mat /9801272

N. Ilieva, W. Thirring, Eur. Phys. J. C 6, 705 (1999)

N. llieva, W. Thirring, Teor. Mat. Fiz. 121, 40 (1999)
[Theor. Math. Phys. 121, 1294 (1999)]

N. Ilieva, H. Narnhofer, W. Thirring, Thermal correlators
of anyons in two dimensions, Vienna preprint UWThPh-
2000-14, ESI preprint ESI-864 (2000), math-ph/0004006
(to appear in J. Phys. A)

F.D.M. Haldane, Phys. Rev. Lett. 67, 937 (1991)

H. Kjgnsberg, J.M. Leinaas, Int. J. Mod. Phys. A 12, 1975
(1997)

N. Ilieva, Two-dimensional anyons and the temperature
dependence of commutator anomalies, Vienna preprint
UWThPh-2000-27, ESI preprint ESI-979 (2001), hep-
th/0101140 (to appear in Int. J. Mod. Phys. A)

N. Tlieva, W. Thirring, Laughlin-type wave function for
two-dimensional anyon fields in a KMS-state, Vienna
preprint UWThPh-2000-39, ESI preprint ESI-944 (2000),
hep-th/0010030 (to appear in Phys. Lett. B)



